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An axisymmetric flow due to a submerged sink in water of infinite depth is considered,
with a stagnation point on the free surface above the sink. Forbes & Hocking (1990)
calculated numerically a flow for each value of the Froude number F smaller than a
critical value Fc. For F close to Fc there is a ring-shaped bump on the free surface.
At F = Fc, the crest of the bump becomes a ring of stagnation points. We use the
numerical procedure of Hocking & Forbes to show that the bump is the first crest
of a train of axisymmetric waves. The wave amplitude decreases with increasing
distance from the source. Then we give a local analysis of axisymmetric free-surface
flows with a circular ring of stagnation points. We find flows in which the surface
has a discontinuity in slope with an enclosed angle of 120◦ all along the ring. This
behaviour is consistent with the numerical solution for F = Fc near the crest of the
bump.

1. Introduction
Injection or withdrawal of water from a reservoir is often modelled by a source or

sink below a free surface. Over the years various configurations have been considered.
Some authors assume that above the source there is a stagnation point (Peregrine
1972; Mekias & Vanden-Broeck 1991; Hocking & Forbes 1992; Vanden-Broeck
1996) and others that there is a cusp (Tuck & Vanden-Broeck 1984; Hocking 1985,
1991; Vanden-Broeck & Keller 1987; Vanden-Broeck 1997; Hocking & Vanden-
Broeck 1997). The solutions are usually obtained numerically, although there is
an exact solution due to Sautreaux (1901) and Craya (1949) and there are some
free streamline solutions when gravity is neglected (Collings 1986; Vanden-Broeck &
Keller 1987; Hocking 1988). In the far field, the free surface is either flat or contains
a train of waves. All these calculations are two-dimensional.

There is an interesting axisymmetric extension due to Forbes & Hocking 1990.
It is a flow in fluid of infinite depth with a stagnation point above the sink (see
figure 1). Hocking & Forbes used Green’s theorem to formulate the problem as an
integral equation. They discretized it and solved the resulting algebraic equations by
Newton’s method. Their results show that there is a solution for each value of the
Froude number

F2 =
m2

gH5
(1.1)
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Figure 1. Sketch of the flow and of the coordinates.

smaller than a critical value Fc. Here m is the total flux produced by the sink, g
is the acceleration due to gravity and H is the distance between the sink and the
stagnation point above it. For F small, as r increases the computed surface elevation
first decreases from the stagnation level, reaches a minimum, and then rises again to
the stagnation level as r → ∞ (see figure 1). Forbes & Hocking (1990) showed that
the solution is then accurately described by an expansion in powers of F . For larger
values of F , a bump appears on the surface beyond the minimum. As F increases,
the height of the bump increases and it reaches the stagnation level for F = Fc.

The solution for F = Fc is particularly interesting because it contains a circular
ring of stagnation points on a free surface. In §3 we determine analytically a local
solution with a circular ring of stagnation points. This solution has a discontinuity in
slope at the ring, with an enclosed angle of 120◦. It is an axisymmetric generalization
of the classical two-dimensional solution proposed by Stokes (1847) to describe the
flow near the crest of a gravity wave of maximum amplitude.

In §2, we present a numerical procedure to solve the flow problem of figure 1,
similar to that of Forbes & Hocking (1990). The differences are explained in §2. We
confirm their finding that a bump arises on the surface. However, by truncating the
domain of computation at a sufficiently large value of r, we find that the bump is
the first crest of a train of waves. As F increases, the waves grow, reaching a limiting
configuration with a ring of stagnation points on the free surface when F = Fc. The
surface near this ring of stagnation points is consistent with the 120◦ angle of the
local analytic solution determined in §3.

2. Formulation
We consider the axisymmetric flow due to a submerged sink of strength m in water

of infinite depth. We seek flows for which there is a stagnation point on the free
surface just above the source (see figure 1). The fluid is assumed to be incompressible
and inviscid and the flow to be irrotational. We introduce cylindrical coordinates r, θ
and z with the origin at the stagnation point. The source is at z = −H , r = 0. The
flow is axisymmetric about the z-axis, so that all the variables are independent of θ.
We denote by z = ζ(r) the equation of the free surface.

We introduce dimensionless variables by taking H as the reference length and m/H
as the reference velocity. Following Forbes & Hocking (1990), we formulate the
problem in terms of the potential function φ. This function must satisfy Laplace’s
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equation in the flow domain together with the conditions

φ→ 1

4π

1

[r2 + (z + 1)2]1/2
as (r, z)→ (0,−1), (2.1)

φz = φrζr on z = ζ(r) (2.2)

and
1
2
F2(φ2

r + φ2
z) + z = 0 on z = ζ(r), (2.3)

where F is defined in (1.1). Furthermore we require φ and its first derivatives to
vanish at infinity. Equations (2.2) and (2.3) are the kinematic and dynamic boundary
conditions. Relation (2.1) specifies the singular behaviour associated with the source.

By using Green’s theorem, Forbes & Hocking (1990) derived the following integro–
differential system on the free surface:

1
2
F2

(
dφ

ds

)2

+ ζ(s) = 0, (2.4)

(
dr

ds

)2

+

(
dζ

ds

)2

= 1, (2.5)

2πφ(s) =
1

[r2(s) + (ζ(s) + 1)2]1/2
−
∫ ∞

0

[φ(σ)− φ(s)]k(A,B, C, d)dσ . (2.6)

Here

A = r(σ)ζ ′(σ)− r′(σ)[ζ(σ)− ζ(s)], B = r(s)ζ ′(σ), (2.7)

C = r2(σ) + r2(s) + [ζ(σ)− ζ(s)]2, D = 2r(s)r(σ), (2.8)

k(A,B, C, D) =
4r(σ)

D(C + D)1/2

[
BK

(
2D

C + D

)
+
AD − BC
C − D E

(
2D

C + D

)]
, (2.9)

and s and σ denote the arclength along the free surface In (2.9) K and E are elliptic
integrals of the first and second kind respectively.

We solve the system defined by (2.4)–(2.6) numerically. The procedure is similar
to the one used by Forbes & Hocking (1990). The only differences are in the finite
difference formula and in the approximation of the integral in (2.6). The details can
be summarized as follows. We introduce the mesh points

sI = (I − 1)e, I = 1, . . . , N, (2.10)

and the corresponding unknowns

φI = φ(sI ), I = 1, . . . , N. (2.11)

Next we introduce the midpoints

smI = (sI + sI+1)/2, I = 1, . . . , N − 1, (2.12)

and evaluate φ(smI ) and φ′(smI ) in terms of the unknowns by linear interpolation and
centred differences. Here the prime denotes derivative with respect to s. We substitute
the values of φ′(smI ) into (2.4) and solve for ζ(smI ). The values of ζ(sI ) are obtained
by linear interpolation. These values are then used to calculate ζ ′(sI ) by centred
differences. The corresponding values r′(sI ) are calculated by using (2.5). Integrating
them with the trapezoidal rule gives the values of r(sI ) and r(smI ).

We satisfy (2.6) at the mesh points (2.10) I = 2, . . . , N − 1. The integral is
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Figure 2. Free-surface profiles in the (r, z)-plane for (a) F = 2, (b) F = 5, (c) F = Fc ≈ 5.4,
(d ) F = 5. The profile (d ) differs from the one in (b) because the truncation value of r is not large
enough.

approximated by the trapezoidal rule with a summation over the points smI . This
leads to N − 2 equations for the N unknowns (2.11). The last two equations are
obtained by relating ζ1 and φ1 to ζI and φI , I = 2, . . . , 4, by three-point interpolation
formulas. This system is solved by Newton’s method. Most results were obtained
with N = 600 and e = 0.02. We checked that the results presented are independent of
e and N by repeating the calculations with larger N and smaller e. We also repeated
the calculations with other choices for the last two equations (in particular other
interpolation formulas) and obtained the same results within graphical accuracy.

Typical free-surface profiles are shown in figure 2(a–c). Figures 2(b) and 2(c) show
that in general there is a train of waves on the surface. The wave amplitude decreases
as r increases. As r →∞, the free surface becomes flat and approaches the stagnation
level. These results are qualitatively similar to those of Forbes & Hocking (1990).
The main difference is that we find a train of waves on the free surface whereas they
find one bump. The reason is that they truncated the integral equation at too small a
value of s. It is necessary to truncate at a sufficiently large value s∗ = (N−1)e of s for
the waves to appear, and for the numerical results to be independent of s∗. This can
be seen by comparing figure 2(b), obtained with s∗ = 12, with figure 2(d ), obtained
with s∗ = 6, both for F = 5. In figure 2(d ), the waves are of smaller amplitude,
and only the first bump is significant. The profile in figure 2(d ) is close to that for
F = 5 shown in figure 2 of Forbes & Hocking’s paper, which was also computed
with s∗ = 6. As a check, we calculated surface profiles with s∗ > 12 and they agreed
within graphical accuracy with the one in figure 2(b).

We believe that there is a train of waves for each value of F 6 Fc but for F small
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Figure 3. Sketch of the axisymmetric free-surface flow near a stagnation point.

they are too small to be seen on the figures. Instead, as r increases, the free-surface
elevation just decreases to a minimum and then appears to rise monotonically to the
stagnation level as r → ∞ (see figure 2(a)). As F increases, the amplitude of the
waves increases. At F = Fc ≈ 5.4, the first crest reaches the stagnation level, and
no solutions were found for F > Fc. (Forbes & Hocking calculated Fc ≈ 6.4.) The
first crest becomes sharper as F approaches Fc, suggesting that the slope becomes
discontinuous at F = Fc. In the next section, we show analytically that there is
indeed a local axisymmetric solution with a discontinuity in slope on the free surface.
Figure 4 shows that this local solution is consistent with the numerical solution for
F = Fc.

3. Axisymmetric solution near a ring of stagnation points on a free surface
Now we study the flow in the neighbourhood of a ring of stagnation points on a

free surface (see figure 3). We assume that the flow is axisymmetric and we choose
cylindrical coordinates r, z such that the ring of stagnation points is at r = R and
z = 0. As in §2, we introduce the potential function φ and denote the equation of the
free surface by z = ζ(r). The problem is then to solve

φrr +
1

r
φr + φzz = 0 (3.1)

with the boundary conditions

φz = φrζr on z = ζ(r), (3.2)

1
2
(φ2

r + φ2
z) + F−2z = 0 on z = ζ(r). (3.3)

We seek a solution near the line of stagnation points r = R, z = 0 by writing

r = R + εr̂, z = εẑ, (3.4)

ζ(r) = εζ̂(r̂) + o(ε), (3.5)

φ(r, z) = ε3/2φ̂(r̂, ẑ) + o(ε3/2), (3.6)

where ε is a small positive parameter.
Substituting (3.3)–(3.6) into (3.1)–(3.3) and retaining only the leading-order terms,

i.e. the terms of order ε1/2 in (3.1) and (3.2), and terms of order ε in (3.3), yields

φ̂r̂r̂ + φ̂ẑẑ = 0, (3.7)

φ̂ẑ = φ̂r̂ζ̂ r̂ , (3.8)

1
2
(φ̂2

r̂ + φ̂2
ẑ) + F−2ẑ = 0 on ẑ = ζ̂(r̂) . (3.9)
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Figure 4. Enlargement of figure 2(c) near the first crest. The dots are the computed values ζI . The
solid straight lines, given by (3.11), enclose an angle of 120◦ symmetric about the vertical.

We now seek a solution of (3.7)–(3.9) with a stagnation point on the free surface at
r̂ = ẑ = 0. This is the classical Stokes problem in the (r̂, ẑ)-plane. A solution is

φ̂ = 2
3
F−1(r̂2 + ẑ2)3/4 cos

[
3
2

(
1
6
π + tan−1(ẑ/r̂)

)]
, (3.10)

ζ̂(r̂) = − 1
3

√
3|r̂| . (3.11)

From (3.11), we see that there is a discontinuity in the slope of the free surface at
r̂ = 0 with an enclosed angle of 120◦ symmetric about the vertical direction.

When (3.10) and (3.11) are used in (3.5) and (3.6), the parameter ε can be combined
with r̂ and ẑ and the results can be written in terms of r and z. Thus ε was just
a convenient tool for expanding ζ and φ in powers of distance from the stagnation
point.

In figure 4 we show the free surface given by (3.11), and we also show an
enlargement of the neighbourhood of the first crest in the surface profile of figure 4,
calculated for F = Fc. Although there are not many mesh points near the crest, the
numerical results are consistent with the angle of 120◦ symmetric about the vertical
given by (3.11).
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